Wednesday, August 18, 2021

Polynomial Interpolation

Here are the M-files to implement Newton interpolation and Lagrange interpolation.

Newton Interpolation M-file

function yint = Newtint(x,y,xx)
% Newtint: Newton interpolating polynomial
% yint = Newtint(x,y,xx): Uses an (n - 1)-order Newton
% interpolating polynomial based on n data points (x, y)
% to determine a value of the dependent variable (yint)
% at a given value of the independent variable, xx.
% input:
% x = independent variable
% y = dependent variable
% xx = value of independent variable at which
% interpolation is calculated
% output:
% yint = interpolated value of dependent variable

% compute the finite divided differences in the form of a
% difference table
n = length(x);
if length(y)~=n, error('x and y must be same length'); end
b = zeros(n,n);
% assign dependent variables to the first column of b.
b(:,1) = y(:); % the (:) ensures that y is a column vector.
for j = 2:n
for i = 1:n-j+1
b(i,j) = (b(i+1,j-1)-b(i,j-1))/(x(i+j-1)-x(i));
end
end
% use the finite divided differences to interpolate
xt = 1;
yint = b(1,1);
for j = 1:n-1
xt = xt*(xx-x(j));
yint = yint+b(1,j+1)*xt;
end

Lagrange Interpolation M-file

% Lagrange interpolating polynomial based on n data points
% to determine a value of the dependent variable (yint) at
% a given value of the independent variable, xx.
% input:
% x = independent variable
% y = dependent variable
% xx = value of independent variable at which the
% interpolation is calculated
% output:
% yint = interpolated value of dependent variable

n = length(x);
if length(y)~=n, error('x and y must be same length'); end
s = 0;
for i = 1:n
product = y(i);
for j = 1:n
if i ~= j
product = product*(xx-x(j))/(x(i)-x(j));
end
end
s = s+product;
end
yint = s;

No comments:

Post a Comment

Numerical Integration Formulas

Here are the M-files to implement composite trapezoidal rule for equally spaced data and unequally spaced data.  Composite Trapezoidal Rule ...