Here are the M-files to implement composite trapezoidal rule for equally spaced data and unequally spaced data.
Composite Trapezoidal Rule (Equally Spaced Data) M-file
function I = trap(func,a,b,n,varargin)
% trap: composite trapezoidal rule quadrature
% I = trap(func,a,b,n,pl,p2,...):
% composite trapezoidal rule
% input:
% func = name of function to be integrated
% a, b = integration limits
% n = number of segments (default = 100)
% pl,p2,... = additional parameters used by func
% output:
% I = integral estimate
if nargin<3,error('at least 3 input arguments required'),end
if ~(b>a),error('upper bound must be greater than lower'),end
if nargin<4|isempty(n),n=100;end
x = a; h = (b - a)/n;
s=func(a,varargin{:});
for i = 1 : n-1
x = x + h;
s = s + 2*func(x,varargin{:});
end
s = s + func(b,varargin{:});
I = (b - a) * s/(2*n);
Composite Trapezoidal Rule (Unequally Spaced Data) M-file
function I = trapuneq(x,y)
% trapuneq: unequal spaced trapezoidal rule quadrature
% I = trapuneq(x,y):
% Applies the trapezoidal rule to determine the integral
% for n data points (x, y) where x and y must be of the
% same length and x must be monotonically ascending
% input:
% x = vector of independent variables
% y = vector of dependent variables
% output:
% I = integral estimate
if nargin<2,error('at least 2 input arguments required'),end
if any(diff(x)<0),error('x not monotonically ascending'),end
n = length(x);
if length(y)~=n,error('x and y must be same length'); end
s = 0;
for k = 1:n-1
s = s + (x(k+l)-x(k))*(y(k)+y(k+l))/2;
end
I = s;
No comments:
Post a Comment