Saturday, July 24, 2021

Roots Finding: Bracketing Methods

Problem 5.7. 

(a) Determine the roots of f(x) = -12 - 21x + 18x2 - 2.75x3 graphically. In addition determine the first root of the function with (b) bisection and (c) false position. For (b) and (c), use xl = -1 and xu = 0, and a stopping criterion of 1%.

Solution:

(a) Plot the graph using MATLAB. The commands are shown as below:
>> x = linspace(-1,8);
>> fx = -12-21*x+18*x.^2-2.75*x.^3;
>> plot(x,fx),grid,xlabel('x'),ylabel('f(x)')


The graph generated is shown as above. Since it is a cubic equation, there are 3 roots. By maximizing the graph, the roots are estimated as -0.4135, 2.2 and 4.74

(b) The root estimate using bisection method is xr = (xl + xu)/2. Begin the iteration with guesses of xl = -1 and xu = 0.
First iteration:
xl = -1                              f(-1) = 29.75
xu = 0                               f(0) = -12
xr = (-1+0)/2 = -0.50     f(-0.50) = 3.3438 

f(-1)f(-0.50) = 99.4766 > 0. Therefore, the root lies in the upper interval, and xr becomes the lower limit for the next iteration, xl = -0.50. 

Second iteration:
xl = -0.50                             f(-0.50) = 3.3438
xu = 0                                   f(0) = -12
xr = (-0.50+0)/2 = -0.25    f(-0.25) = -5.5820

f(-0.50)f(-0.25) = -18.66496 < 0. Therefore, the root lies in the lower interval, and xr becomes the upper limit for the next iteration, xu = -0.25
The approximate relative error is 100%. 

The remainder of the iterations are displayed in the following table. 

Hence, after 8 iterations, the approximate error finally falls below 1% and the computation can be terminated. The root estimate is -0.41797

(c) The root estimate using false position method is xr = xu - f(xu)(xl - xu)/(f(xl) - f(xu)). Begin the iteration with guesses of xl = -1 and xu = 0.
First iteration:
xl = -1                        f(-1) = 29.75
xu = 0                        f(0) = -12
xr = -0.2874             f(-0.2874) = -4.4116

f(-1)f(-0.2874) = -131.2731 < 0. Therefore, the root lies in the lower interval, and xr becomes the upper limit for the next iteration, xu = -0.2874

Second iteration:
xl = -1                          f(-1) = 29.75
xu = -0.2874               f(-0.2874) = -4.4116
xr = -0.3795                f(-0.3795) = -1.2878

f(-1)f(-0.3795) = -38.3130 < 0. Therefore, the root lies in the lower interval, and xr becomes the upper limit for the next iteration, xu = -0.3795
The approximate relative error is 24.3%. 

The remainder of the iterations are displayed in the following table. 

Hence, after 5 iterations, the approximate error finally falls below 1% and the computation can be terminated. The root estimate is -0.41402

No comments:

Post a Comment

Numerical Integration Formulas

Here are the M-files to implement composite trapezoidal rule for equally spaced data and unequally spaced data.  Composite Trapezoidal Rule ...